The likelihood ratio test is used when you cannot find a uniformly most powerful test for a given set of hypothesis. This will yield a very good test that is decently powerful.
\(H_0:\ \theta\in\Theta_0\)
\(H_a:\ \theta\in\Theta_a\)
\(\Theta = \Theta_0\cup\Theta_a\)
\(\Theta\) is the parameters space
\[ \Lambda = \frac{L(\hat\theta_0)}{L(\hat\theta)}=\frac{f(x_1,\ldots,x_n;\hat\theta_0)}{f(x_1,\ldots,x_n;\hat\theta)} \]
\(\hat\theta_0=\underset{\theta\in\Theta_0}{\arg\max}\ L(\theta)\)
\(\hat\theta=\underset{\theta\in\Theta}{\arg\max}\ L(\theta)\): MLE
Reject \(H_0\) if \(\Lambda\le k\)
\(H_0:\ \mu=\mu_0\)
\(H_a:\ \mu\ne\mu_0\)
\[ X_1,\ldots,X_n\sim N(\mu,\sigma^2) \]