Homework 0
Problem 1
Set the equation to 0 and solve for x:
- \ln(x^2+5)
- x^2+6x+7
- 3x^2-5x+2
- e^{x^2-4}
- \ln(5x) + 3
Problem 2
Complete the following derivatives:
f(x)=e^x
f(x) = e^{x^2}
f(x) = e^x x^2
f(x) = \frac{\ln(x^2)}{x^2+3x}
f(x) = \ln(x)
Problem 3
Complete the following integrals:
- \int-\frac{9}{x^4}dx
- \int x^2\ln(x) dx
- \int x^2\sqrt x dx
- \int x^2e^{-x^3}dx
- \int2x(x^2+1)^4dx
Problem 4
Evaluate the following identities1:
- (x+y)^n
- \sum^\infty_{i=1}r^i; |r|<1
- \sum^{m}_{i=1}r^i; |r|<1
- \sum^\infty_{i=0}\frac{x^i}{i!}
- \frac{n!}{(n-1)!}
Problem 5
Evaluate the following integrals:
- \int_{-\infty}^{\infty} \frac{x}{\sqrt{2\pi}}e^{-x^2/2}dx
- \int_{0}^{\infty} x \lambda e^{-\lambda x}dx
Problem 6
Find the derivative with respect to \mu:
- \log{\prod^n_{i=1}\frac{1}{\sqrt{2\pi}}}e^{-\frac{(x_i - \mu)^2}{2}}
Footnotes
Either convert to summation notation or evaluate the summation.↩︎