REVIEW:

RANDOM VARIABLES AND DISTRIBUTION
FUNCTIONS



« Review Random Variables
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RANDOM VARIABLES

A random variable is function that maps the sample space to real value.
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Discrete Random Variables
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DISCRETE RANDOM VARIABLES

A random variable is considered to be discrete if it can only map to a
finite or countably infinite number of distinct values.
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The probability mass function of dlscrete variable can be represented
by a formula, table, or a graph. The Probability of a random variable Y
can be expressed as P(Y = y) for all values of y.
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The cumulative distribution function provides the P(Y < y)fora
random variable Y. (

o /= =
PMf l/‘o /o yé 2 7

cDF '/, VR 3 7

m453.ings.info/lectures/1a



EXPECTED VALUE

The expected value is the value we expect when we randomly sample
from population that follows a specific distribution. The expected value
of Yis

E(Y)= ) yP(y)
y
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VARIANCE

The variance is the expected squared difference between the random
variable and expected value.

Var(Y) = ) {y — E()}* P(y)
y

Var(Y) = E(X?) — E(X)?
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KNOWN DISTRIBUTIONS

Distribution Parameter(s) @ PMF P(Y = y)
Bernoulli p p

Binomial nandp G)p’(1 — p)"~F
Geometric p (1 —p)P~1p
Negative ‘randp (f:ll ) (1 = p)yT
Binomial

Hypergeometric N, n,and r GG

()

. y
Poisson A %e A
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Binomial Distribution
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BINOMIAL DISTRIBUTION

An experiment is said to follow a binomial distribution if

1. Fixed n 4 |
2. Each trial has 2 outcomes x/=  q@xNx!
3. The probability of success is a constant p (// | g 3z |

4. The trials are independent of each

P(X =x)=C)p (1 =p)"™~
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EXPECTED VALUE OF A BINOMIAL

DISTRIBUTION é/j(/()f /7/9
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Poisson Distribution
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POISSON DISTRIBUTION

The poisson distribution describes an experiment that measures that
occurrence of an event at specific point and/or time period.

P(X =x) = i—je_’l
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EXPECTED VALUE OF APOISSON  _ < o ==

DISTRIBUTION A
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Continuous Random Variables
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CONTINUOUS RANDOM VARIABLES

A random variable X is considered continuous if the P(X = x) does
not exist.
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CDF

The cumulative distribution function of X provides the P(X < x),
denoted by F(x), for the domain of X.

Properties of the CDF of X:

1. F(—o0) = limy_,_, F(y) =0
2. F(0) =lim,_,, F(y) =1

3. F(x) is a nondecreaseing function
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PDF

The probability density function of the random variable X is given by

dF(x) ,
- — F'(x
J(x) 1) (x)
wherever the derivative exists.
Properties of pdfs:
1. f(x) >0

2. [ foydx =1
3.Pa< X <by=Pla<X<b)=[ f(x)dx
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EXPECTED VALUE

The expected value for a continuous distribution is defined as

E(X) = /xf(x)dx

The expectation of a function g(X) is defined as

Eig(X)} = / g(x) f(x)dx
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EXPECTED VALUE PROPERTIES

1. E(c) = ¢, where c is constant
2. E{cg(X)} = cE{g(X)}
3. E{g1(X) + g2(X) + -+ + gu(X)} = E{g1(X)} + E{g2(X)} + -
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VARIANCE

The variance of continuous variable is defined as

Var(X) = E[{X — E(X)}*] = / (X — E(X)}* f(x)dx
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Uniform Distribution
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UNIFORM DISTRIBUTION

A random variable is said to follow uniform distribution if the density
function is constant between two parameters.

bi a<x<b
f(x) = ’

0 elsewhere
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EXPECTED VALUE
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« Normal Distribution
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NORMAL DISTRIBUTION

A random variable is said to follow a normal distribution if the the
frequency of occurrence follow a Gaussian function.

_ 1 (x — )
f(X) - \/271_0_2 exp{ 20_2 }
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EXPECTED VALUE
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