Review:

More Probability Theory
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Independent Random Variables

Let X and Y be independent random variables with joint

density function fyy(x,y). Let g(X) and A(Y') be
functions of X and Y, respectively.

Then:

E{g(X)h(Y)} = E{g(X)} E{h(Y)}
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Let X follow a distribution f, with the an MGF M (1),
the MGF of Y = a X + b is given as

My (t) = et M (at)

) 5 F(Y) A *////f)
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Let X and Y be two random variables with MGFs M y(t)
and My(t), respectively, and are independent. The MGF
———————

of U=X-Y

MU<t) - MX(t)MY(_t)

M, (©)- E(@ét//: E(€+(x—v7
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Uniqueness

Let X and Y have the following distributions F'y(x) and
Fy(y) and MGFs M x (t) and My(t), respectively. X
and Y have the same distribution F'y (z) = Fy(y) if
and only if My (t) = My(t).
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Uniqueness

Let X¢,---, X,, be independent random variables,
where X, ~ N (p;,0?), with

My (1) = exp{p;t + o2t?/2} fori = 1,--,n. Find
the MGF of Y = ay X; + -+ a, X, wherea, -, a,

are constants.
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Using the Distribution Function

Let there be a random variable X with a known
distribution function F'y (), the density function for the
random variable Y = g(X) can be found with the
following steps

1.
2.
3.

Find the region of Y'in the space of X, find g~ 1 (y)
Find the region of Y < y

Find Fy(y) = P(Y < y) using the probability
density function of X over region Y <y

Find fy{y) by differentiating Fy(y)
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Example 1

Let X have the following probability density function:

2r 0< <1
Ix(@) _{ 0 otherwise

Find the probability density function of Y = 3X — 12
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Using the PDF

Let there be a random variable X with a known
distribution function F'y (), if the random variable

Y = g(X) is either increasing or decreasing, than the
probability density function can be found as

) = Frelo ') |d9d—y(y>|
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Example 2

Let X have the following probability density function:

3.2
Ix(@) { 0 otherwise

Find the probability density function of
Y =5—(X/2)
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Using the MGF

Using the uniqueness property of Moment Generating
Functions, for a random variable X with a known
distribution function F'y(x) and random variable

Y = g(X), the distribution of Y'can be found by:

1. Find the moment generating function of Y, My(t).
2. Compare Myt), with known moment generating
functions. If My(t) = M(t), for all values t,

them Yand V'have identical distributions.

1m/13



Example 3

Let X follow a normal distribution with mean g and

variance o2. Find the distribution of Z = M.
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Example 4

Let Z follow a standard normal distribution with mean O
and variance 1. Find the distribution of Y = Z?2
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