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Partial Derivatives

For a function f(x,y), the partial derivative with respect
to x is taken by differentiating f(x, y) with respect to x
while treating ¢ as a constant. For example:

flz,y) = 2 +In(y)
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Multiple Integration

Multiple integration is when you integrate a multivariate
function by multiple variables. This is done by integrating
the function by an individual variable at a time. For
example:

f(x,y) = 22 + y? which can be integrated as:
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Joint Distributions

A joint distribution is a process where more than one
random variable is generated; for example, collecting
biomedical data, such as multiple biomarkers, are
considered to follow a joint distribution. In mathematical
terms, instead of dealing with a random variable, we are
dealing with a random vector. Observing a particular
random vector will have a probability attached to it.
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Bivariate Discrete Distributions

Let X and Y be 2 discrete random variables, the joint
distribution function of (X, Y") is defined as

pxyl@,y) =P(X =Y =y)
The properties of a bivariate discrete distribution are

® pxylw,y) > 0forallz, y

¢ 3,5, pxyley) =1
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Bivariate Continuous Distribution

Let X and Y be 2 continuous random variables, the joint
distribution function of (X, Y") is defined as

FX,Y(xay) = P(X S ZE,Y S y)

The properties of a bivariate continuous distribution are

o°F
® fxy(®y) =z,

® fxylz,y) >0
'fffXY y)dydr =1
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3r 0<y<z<1
f(x,y){ 0 otherwise

Find P(0 < X < 0.5,0.25 < Y)
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Bivariate Normal Distribution
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8 /34



Bivariate Normal Distribution
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Bivariate Normal Distribution

NK —12 )( 0><\/22><T v 12.5X1.5 )}
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Bivariate Normal Distribution
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Bivariate Normal Distribution
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Bivariate Normal Distribution
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Marginal Density Functions

A Marginal Density Function is density function of one
random variable from a random vector.
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Marginal Discrete Probability Mass Function

Let X and Y be 2 discrete random variables, with a joint
distribution function of

pX,Y(x7y> — P(X =x,Y = y)

The marginal distribution of X is defined as

px(z) = Z pX,Y<x7 Y)

15/ 34



Marginal Continuous Density Function

Let X and Y be 2 continuous random variables, with a
joint density function of fy y(x,¥). The marginal
distribution of X is defined as

fx(z) = /fX,Y(SUay)dy
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2¢ 0<y<1;0<z<1

Feten{ %

otherwise

Find fx ()
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Bivariate Marginal Density
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Conditional Distributions

A conditional distribution provides the probability of a
random variable, given that it was conditioned on the
value of a second random variable.
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Discrete Conditional Distributions

Let X and Y be 2 discrete random variables, with a joint
distribution function of

pxylz,y) =P(X =2,Y =y)

The conditional distribution of X|Y = y is defined as

pX,Y<x7 y)

Pxy=y(®) = =00
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Continuous Conditional Distributions

Let X and Y'be 2 continuous random variables, with a
joint density function of fy y(x,y). The conditional
distribution of X|Y = yis defined as

fX|Y=y(5U) = %
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Bivariae Normal Conditional Distribution
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Independent Random Variables

Random variables are considered independent of each
other if the probability of one variable does not affect the
probability of another variable.
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Discrete Independent Random Variables

Let X and Y be 2 discrete random variables, with a joint
density function of px y(z,y). X is independent of Y'if
and only if

pX,Y(37> y) = px(7)py(y)
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Continuous Independent Random Variables

Let X and Y be 2 continuous random variables, with a
joint density function of fx y(x,y). X isindependent
of Yifand only if

fX,Y(xa y) = fx(@)fy(y)
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Matrix Algebra

det(A) = CL1 CL2

= ()
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X Loy o2 0
(v) =) (T 2))

Showthat X 1 Y.

() = det(2m2) 2 exp { = (w— p) 'S (w -

2
where Y = (Uy 02 ),,u: (’u‘” ),and
0 oy Py

z
w = 27 | 34



Covariance

Let X and Y be 2 random variables with mean
E(X) = p, and E(Y)) = p,, respectively. The
covariance of X and Yis defined as

Cou(X,Y) = B{(X — p)(Y — 1)}

Cov(X,Y) = E(XY) — u,p,
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Covariance

If X and Yare independent random variables, then

Cov(X,Y)=0
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The correlation of X and Yis defined as

Cov(X,Y)
VVar(X)Var(Y)

p="Cor(X,Y)=
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Expectations

Let X, X, ..., X,, be asetof random variables, the
expectation of a function g(X1, ..., X,,) is defined as

E{g(Xy, s X)b = ) Y 9(Xpse, X, )p(x

r€X, zx,€X,

or

B{g(X)} = /

1€X4
X

/ 9(X) f(X)dz,, - dz,
z,€X,,
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Expected Value and Variance of Linear Functions

Let X4,...,X,, and Y7, ..., Y, berandom variables
with E(X;) = u; and E(Y;) = 7;. Furthermore, let
U=3" a;X;andV = Z;n:l b;Y; where {a;}7"
and {b;}7, are constants. We have the following
properties:
_ n
* EU)=>.,_
® Var(U) =
>0 aiVar(X;) + 22<ZaiajCOU(Xi, X;)
i<

® Cou(U,V) = Z:.L:l Z;nzl Cov(X;,Y;)

1 @ity
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Conditional Expectations

Let X; and X, be two random variables, the conditional
expectation of g(X7), given X5 = x5, is defined as

E{g(X;)| Xy =z} = ZQ% (1]22)

E{g(X,)|X, = ) = / g(1) f(21]25)ds.

Z1
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Conditional Expectations

Furthermore,

E(X,) = EX2{EX1|X2 (X]X5)}

and

Var(X,) = Ex {Vary x, (X;|Xo)+Vary {Ex | x
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