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Partial Derivatives

For a function 𝑓(𝑥, 𝑦), the partial derivative with respect
to 𝑥 is taken by differentiating 𝑓(𝑥, 𝑦) with respect to 𝑥
while treating 𝑦 as a constant. For example:

𝑓(𝑥, 𝑦) = 𝑥2 + ln(𝑦)
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Multiple Integration

Multiple integration is when you integrate a multivariate
function by multiple variables. This is done by integrating
the function by an individual variable at a time. For
example:

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 which can be integrated as:
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Joint Distributions

A joint distribution is a process where more than one
random variable is generated; for example, collecting
biomedical data, such as multiple biomarkers, are
considered to follow a joint distribution. In mathematical
terms, instead of dealing with a random variable, we are
dealing with a random vector. Observing a particular
random vector will have a probability attached to it.
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Bivariate Discrete Distributions

Let 𝑋 and 𝑌 be 2 discrete random variables, the joint
distribution function of (𝑋, 𝑌 ) is defined as

𝑝𝑋,𝑌(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

The properties of a bivariate discrete distribution are

• 𝑝𝑋,𝑌(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦

• ∑𝑥 ∑𝑦 𝑝𝑋,𝑌(𝑥, 𝑦) = 1
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Bivariate Continuous Distribution

Let 𝑋 and 𝑌 be 2 continuous random variables, the joint
distribution function of (𝑋, 𝑌 ) is defined as

𝐹𝑋,𝑌(𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦).

The properties of a bivariate continuous distribution are

• 𝑓𝑋,𝑌(𝑥, 𝑦) = 𝜕2𝐹𝑋,𝑌
𝜕𝑥𝜕𝑦

• 𝑓𝑋,𝑌(𝑥, 𝑦) ≥ 0

• ∫
𝑥

∫
𝑦

𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑦𝑑𝑥 = 1
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Example

𝑓(𝑥, 𝑦) { 3𝑥 0 ≤ 𝑦 ≤ 𝑥 ≤ 1
0 otherwise

Find 𝑃(0 ≤ 𝑋 ≤ 0.5, 0.25 ≤ 𝑌 )
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Bivariate Normal Distribution

( 𝑋
𝑌 ) ∼ 𝑁 [( 𝜇𝑋

𝜇𝑌
) , ( 𝜎2

𝑋 𝜌𝜎𝑋𝜎𝑌
𝜌𝜎𝑌𝜎𝑋 𝜎2

𝑌
)]
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Bivariate Normal Distribution
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Bivariate Normal Distribution
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Bivariate Normal Distribution
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Bivariate Normal Distribution
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Bivariate Normal Distribution
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Marginal Density Functions

A Marginal Density Function is density function of one
random variable from a random vector.
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Marginal Discrete Probability Mass Function

Let 𝑋 and 𝑌 be 2 discrete random variables, with a joint
distribution function of

𝑝𝑋,𝑌(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

The marginal distribution of 𝑋 is defined as

𝑝𝑋(𝑥) = ∑
𝑦

𝑝𝑋,𝑌(𝑥, 𝑦)
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Marginal Continuous Density Function

Let 𝑋 and 𝑌 be 2 continuous random variables, with a
joint density function of 𝑓𝑋,𝑌(𝑥, 𝑦). The marginal
distribution of 𝑋 is defined as

𝑓𝑋(𝑥) = ∫
𝑦

𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑦
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Example

𝑓𝑋,𝑌(𝑥, 𝑦) { 2𝑥 0 ≤ 𝑦 ≤ 1; 0 ≤ 𝑥 ≤ 1
0 otherwise

Find 𝑓𝑋(𝑥)
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Bivariate Marginal Density
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Conditional Distributions

A conditional distribution provides the probability of a
random variable, given that it was conditioned on the
value of a second random variable.
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Discrete Conditional Distributions

Let 𝑋 and 𝑌 be 2 discrete random variables, with a joint
distribution function of

𝑝𝑋,𝑌(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

The conditional distribution of 𝑋|𝑌 = 𝑦 is defined as

𝑝𝑋|𝑌 =𝑦(𝑥) =
𝑝𝑋,𝑌(𝑥, 𝑦)

𝑝𝑌(𝑦)
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Continuous Conditional Distributions

Let 𝑋 and 𝑌 be 2 continuous random variables, with a
joint density function of 𝑓𝑋,𝑌(𝑥, 𝑦). The conditional
distribution of 𝑋|𝑌 = 𝑦 is defined as

𝑓𝑋|𝑌 =𝑦(𝑥) =
𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑌(𝑦)
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Bivariae Normal Conditional Distribution
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Independent Random Variables

Random variables are considered independent of each
other if the probability of one variable does not affect the
probability of another variable.
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Discrete Independent Random Variables

Let 𝑋 and 𝑌 be 2 discrete random variables, with a joint
density function of 𝑝𝑋,𝑌(𝑥, 𝑦). 𝑋 is independent of 𝑌 if
and only if

𝑝𝑋,𝑌(𝑥, 𝑦) = 𝑝𝑋(𝑥)𝑝𝑌(𝑦)
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Continuous Independent Random Variables

Let 𝑋 and 𝑌 be 2 continuous random variables, with a
joint density function of 𝑓𝑋,𝑌(𝑥, 𝑦). 𝑋 is independent
of 𝑌 if and only if

𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦)
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Matrix Algebra

𝐴 = ( 𝑎1 0
0 𝑎2

)

det(𝐴) = 𝑎1𝑎2

𝐴−1 = ( 1/𝑎1 0
0 1/𝑎2

)
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Example

( 𝑋
𝑌 ) ∼ 𝑁 {( 𝜇𝑥

𝜇𝑦
) , ( 𝜎2

𝑥 0
0 𝜎2

𝑦
)}

Show that 𝑋 ⟂ 𝑌.

𝑓𝑋,𝑌(𝑥, 𝑦) = det(2𝜋Σ)−1/2 exp {−1
2

(𝑤 − 𝜇)𝑇Σ−1(𝑤 − 𝜇)}

where Σ = ( 𝜎2
𝑦 0

0 𝜎2
𝑦

), 𝜇 = ( 𝜇𝑥
𝜇𝑦

), and

𝑤 = ( 𝑥
𝑦 ) 27 / 34



Covariance

Let 𝑋 and 𝑌 be 2 random variables with mean
𝐸(𝑋) = 𝜇𝑥 and 𝐸(𝑌 ) = 𝜇𝑦 , respectively. The
covariance of 𝑋 and 𝑌 is defined as

𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐸{(𝑋 − 𝜇𝑥)(𝑌 − 𝜇𝑦)}

𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐸(𝑋𝑌 ) − 𝜇𝑥𝜇𝑦
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Covariance

If 𝑋 and 𝑌 are independent random variables, then

𝐶𝑜𝑣(𝑋, 𝑌 ) = 0
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Correlation

The correlation of 𝑋 and 𝑌 is defined as

𝜌 = 𝐶𝑜𝑟(𝑋, 𝑌 ) = 𝐶𝑜𝑣(𝑋, 𝑌 )
√𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(𝑌 )
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Expectations

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a set of random variables, the
expectation of a function 𝑔(𝑋1, … , 𝑋𝑛) is defined as

𝐸{𝑔(𝑋1, … , 𝑋𝑛)} = ∑
𝑥1∈𝑋1

⋯ ∑
𝑥𝑛∈𝑋𝑛

𝑔(𝑋1, … , 𝑋𝑛)𝑝(𝑥1, … , 𝑥𝑛)

or

𝐸{𝑔(𝑋)} = ∫
𝑥1∈𝑋1

⋯ ∫
𝑥𝑛∈𝑋𝑛

𝑔(𝑋)𝑓(𝑋)𝑑𝑥𝑛 ⋯ 𝑑𝑥1

• 𝑋 = (𝑋1, ⋯ , 𝑋𝑛) 31 / 34



Expected Value and Variance of Linear Functions

Let 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑚 be random variables
with 𝐸(𝑋𝑖) = 𝜇𝑖 and 𝐸(𝑌𝑗) = 𝜏𝑗 . Furthermore, let
𝑈 = ∑𝑛

𝑖=1 𝑎𝑖𝑋𝑖 and 𝑉 = ∑𝑚
𝑗=1 𝑏𝑗𝑌𝑗 where {𝑎𝑖}𝑛

𝑖=1
and {𝑏𝑗}𝑚

𝑗=1 are constants. We have the following
properties:

• 𝐸(𝑈) = ∑𝑛
𝑖=1 𝑎𝑖𝜇𝑖

• 𝑉 𝑎𝑟(𝑈) =
∑𝑛

𝑖=1 𝑎2
𝑖 𝑉 𝑎𝑟(𝑋𝑖) + 2∑ ∑

𝑖<𝑗
𝑎𝑖𝑎𝑗𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)

• 𝐶𝑜𝑣(𝑈, 𝑉 ) = ∑𝑛
𝑖=1 ∑𝑚

𝑗=1 𝐶𝑜𝑣(𝑋𝑖, 𝑌𝑗)
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Conditional Expectations

Let 𝑋1 and 𝑋2 be two random variables, the conditional
expectation of 𝑔(𝑋1), given 𝑋2 = 𝑥2 , is defined as

𝐸{𝑔(𝑋1)|𝑋2 = 𝑥2} = ∑
𝑥1

𝑔(𝑥1)𝑝(𝑥1|𝑥2)

or

𝐸{𝑔(𝑋1)|𝑋2 = 𝑥2} = ∫
𝑥1

𝑔(𝑥1)𝑓(𝑥1|𝑥2)𝑑𝑥1.

33 / 34



Conditional Expectations

Furthermore,

𝐸(𝑋1) = 𝐸𝑋2
{𝐸𝑋1|𝑋2

(𝑋1|𝑋2)}

and

𝑉 𝑎𝑟(𝑋1) = 𝐸𝑋2
{𝑉 𝑎𝑟𝑋1|𝑋2

(𝑋1|𝑋2)}+𝑉 𝑎𝑟𝑋2
{𝐸𝑋1|𝑋2

(𝑋1|𝑋2)}
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