Estimators
Likelihood Function
MLE
Example
An estimator is an operation computing the value of an estimate, that targets the parameter, using measurements from a sample.
An unbiased estimator \(\hat\theta\) is an estimator that satisfies the following condition:
\[ E(\hat\theta) = \theta \]
The bias of an estimator is defined as
\[ B(\hat\theta) = E(\hat\theta)-\theta \]
The mean square of an estimator is \(\hat\theta\) is given as
\[ \begin{eqnarray} MSE(\hat\theta) & = & E\{(\hat\theta-\theta)^2\} \\ & = & Var(\hat\theta) + B(\hat\theta)^2 \end{eqnarray} \]
Let \(X_1,\ldots,X_n\overset{iid}{\sim}N(\mu,\sigma^2)\), find the bias of \(\bar X\).
Let \(X_1,\ldots,X_n\overset{iid}{\sim}N(\mu,\sigma^2)\), find the bias of \(S²\).
Let \(X_1,X_2,X_3\) follow and exponential distribution with mean and variance \(\lambda\) and \(\lambda²\), respectively. Using the following estimators:
\(\hat\theta_1 = X_1\)
\(\hat\theta_2 = \frac{X_1+X_2}{2}\)
\(\hat\theta_3 = \frac{X_1+2X_2}{3}\)
\(\hat\theta_4 = \frac{X_1+X_2+X_3}{3}\)
Identify which estimator:
Estimators
Likelihood Function
MLE
Example
Using the joint pdf or pmf of the sample \(\boldsymbol X\), the likelihood function is a function of \(\boldsymbol \theta\), given the observed data \(\boldsymbol X =\boldsymbol x\), defined as
\[ L(\boldsymbol \theta|\boldsymbol x)=f(\boldsymbol x|\boldsymbol \theta) \]
If the data is iid, then
\[ f(\boldsymbol x|\boldsymbol \theta) = \prod^n_{i=1}f(x_i|\boldsymbol\theta) \]
Estimators
Likelihood Function
MLE
Example
Using the joint pdf or pmf of the sample \(\boldsymbol X\), the likelihood function is a function of \(\boldsymbol \theta\), given the observed data \(\boldsymbol X =\boldsymbol x\), defined as
\[ L(\boldsymbol \theta|\boldsymbol x)=f(\boldsymbol x|\boldsymbol \theta) \]
If the data is iid, then
\[ f(\boldsymbol x|\boldsymbol \theta) = \prod^n_{i=1}f(x_i|\boldsymbol\theta) \]
If \(\ln\{L(\boldsymbol \theta)\}\) is monotone of \(\boldsymbol \theta\), then maximizing \(\ell(\boldsymbol\theta) = \ln\{L(\boldsymbol \theta)\}\) will yield the maximum likelihood estimators.
The maximum likelihood estimator are the estimates of \(\boldsymbol \theta\) that maximize \(\ell(\boldsymbol\theta)\).
Estimators
Likelihood Function
MLE
Example
Let \(X_1,\ldots,X_n\overset{iid}{\sim}\mathrm{Pois}(\lambda)\), show that the MLE of \(\lambda\) is \(\bar x\).
Let \(X_1,\ldots,X_n\overset{iid}{\sim}N(\mu,\sigma^2)\). Show that the MLE’s of \(\mu\) and \(\sigma^2\) are \(\bar x\) and \(\frac{n-1}{n}s^2\), respectively.
Let \(X_1,\ldots,X_n\overset{iid}{\sim}Exp(\lambda)\). Find the MLE of \(\lambda\)